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Path integral approach to the compressible Ising model 
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International Centre for Theoretical Physics. Trieste, Italy 

Received 3 July 1974 

Abstract. The path integral method is used to decouple the spin-phonon variables in the 
Wagner-Swift Hamiltonian for a compressible Ising model where the exchange interaction 
is expanded up to terms quadratic in displacements. A brief review is given of the earlier 
work. The approximations made by the previous workers to obtain the effect of the spin- 
phonon coupling on the Debye-Waller factor and the phonon frequencies are shown to 
correspond to the lowest-order terms in the cumulant expansion in the present approach. 
Finally the procedure to extend the formalism to anharmonic crystals is outlined. 

Introduction 

There is clear experimental evidence that the magnetic substances show an anomalous 
volume expansion in the neighbourhood of the transition temperature (Gonano et a /  
1968, Donaldson and Lanchester 1968). This volume expansion can be understood on 
the basis of the coupling between a system of interacting ions and interacting spins. 
The coupling is mainly due to the fact that the exchange interaction between the spins 
located on two ions is a fairly strong function of the inter-ionic distance. The distance 
is modulated by the lattice vibrations which, therefore, couple to the spins. The effect 
of the spin-phonon coupling on the magnetic properties of crystals on the basis of an 
Ising model has been the subject of considerable interest in recent years (Matsudaira 
1968, Bolton and Lee 1970, Lee and Bolton 1971, Horner 1972, Salinas 1973, Aharony 
1973). Spin-phonon coupling has also been found to effect the Mossbauer spectrum 
(Bashkirov and Selyutin 1968, Nandwani and Puri 1972) and the elastic constants 
(Wagner and Swift 1970). 

The traditional approach to study the influence of spin-phonon coupling is to 
expand the exchange and the lattice energies in terms of the displacements of the ions 
around the equilibrium positions. The coupling between the displacements and the 
spins is precisely what makes the problem difficult to solve. However, if we approximate 
the Hamiltonian of the system by retaining only the quadratic term in the potential 
energy and the linear term in the exchange energy, it is possible to completely decouple 
the spin and the phonon variables and obtain an effective Hamiltonian. This has been 
shown previously by Matsudaira (1968), Wagner and Swift (1970) and Bolton and Lee 
(1970). To this order of approximation the Ising exchange interaction does not lead to a 
renormalization of phonon frequencies (Oitniaa 1974). However, one expects that the 
phonon frequencies should be sensitive to the ordering of the spins. To obtain this 
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effect in the Ising model it is necessary, therefore, to expand the exchange energy to 
second order in ionic displacements. Such a term was in fact considered in an approxi- 
mate way by Bashkirov and Selyutin (1968) as contributing to the Debye-Waller factor, 
and by Wagner and Swift (1970) as contributing to the elastic constants. This term was 
shown by Wagner and Swift to be important also in preserving the symmetry properties 
of the elastic constants. To our knowledge no effort has so far been made to obtain an 
effective Hamiltonian in the presence of the quadratic term in the exchange interaction. 

The purpose of this paper is to derive an effective spin and an effective lattice 
Hamiltonian by decoupling the spin and the phonon variables of an Ising model in 
which the exchange interaction is expanded up to  second order in displacements. To 
achieve this, we use the path integral method first introduced by Feynman (1948). One 
of the advantages of this method is that the operators are turned into classical variables. 
Since the original formulation, this method has been applied successfully to several 
problems such as liquid helium (Feynman 1953), polarons (Feynman 1955) and an- 
harmonic crystals (Samathiyakanit and Glyde 1973). 

The paper can also be regarded as an application of the path integral method to a 
new area. To obtain the effective Hamiltonian we first eliminate the linear terms by 
averaging over the quadratic terms. Taking advantage of the Gaussian averaging, a 
cumulant expansion of the average is made. In the second step we average the displace- 
ment term over that part of the Hamiltonian which contains only the spins. This 
immediately decouples the partition function. The present problem is in a way similar 
to the polaron problem studied by Feynman (1955). The important advantage of this 
kind of approach is that successive orders of approximation can be employed to improve 
upon the results. It is shown here that the previous work on the Debye-Waller factor by 
Bashkirov and Selyutin (1968) and on the shift of the phonon frequencies by Oitmaa 
(1974) corresponds to retaining the lowest-order cumulants in the present treatment. 
We also discuss the possible extension of the method to include the anharmonic effects. 

2. WagnerSwift Hamiltonian 

We consider a crystal of N identical atoms. For simplicity we assume one atom per unit 
cell. The formalism can easily be extended to non-primitive lattices. If we expand the 
potential energy @ and the exchange energy Y in powers of displacements, the 
Hamiltonian of the lattice in the harmonic approximation may be written as 

x 4 q U ' )  - U / ) r * ( h  (1) 

where U,(/) is the a Cartesian component of the displacement with respect to the equilib- 
rium position of the 1th ion, p,( l )  is the conjugate momentum, M is the atomic mass, 
a,, is the static potential energy, and 

( 2 )  
is the magnetic exchange Hamiltonian in which oi is the single-component spin variable 
of the ith ion. The external force on the ion at 41) is denoted by K(1). A summation over 
repeated indices is applied everywhere. Q2(l), @,&I, l'), ",(I) and Yzfi(l, 1') are the 
coefficients of expansion evaluated at the equilibrium positions. Y zp(l ,  l'), for example, 

YJ = + J ( U ( i )  - v(j))OiUj 
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is defined as 
Ya6(I, 1‘) = dZY/du,(l) dup(I‘)lo 

In the Feynman formulation, the partition function is given by 

(3) 

(4) 

where @(U(/ ,  T ) )  denotes the integration over all possible paths. H(T) is obtained from 
H by introducing time dependence in r( l ) ,  U ( / )  and p(l)  explicitly. The coefficients of 
expansion are assumed to be independent of time. The upper limit /3 of the integral 
means ( l / k , T )  and is not to be confused with the subscript /3 which is the Cartesian com- 
ponent. Tr means the trace with respect to the spins. It is convenient to define 

Hh = (1/2M)pz(I)pz(1) + @O 1’) + yz&l? i ’ ) ) ’ a ( b @ ( j ‘ ) *  ( 5 )  

Taking advantage of the quadratic nature of Hh, the partition function may be written as 

where 

and 

The interesting thing about writing the partition function in the form of equation (6) 
is that, on expanding the average in cumulants, only the second cumulant is non-zero. 
This is due to the fact that while Hh is quadratic in displacements, the exponent inside the 
angular brackets is linear. Equation (6), therefore, may be rewritten as 

It may be pointed out that the partition function given by equation (9) is exact for the 
Wagner-Swift Hamiltonian. The linear terms do not appear explicitly now. The 
phonon and the spin variables are still not decoupled due to the presence of YZb(l, 1’) in 
Hh .  However, if we put ‘Pub(/, 1’) = 0, the effective spin Hamiltonian is immediately 
obtained from equation (9)and may be compared with the results obtained by Bolton and 
Lee (1970), who used a perturbation technique, or with the effective Hamiltonian ob- 
tained by Wagner and Swift (1970) with the help of a unitary transformation. 

At this point a word about the equilibrium positions seems to be in order. The 
displacements U( / ) ,  as has already been pointed out, are with respect to the true equilib- 
rium positions which can be obtained, in principle, by differentiating the total free energy 
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with respect to the external forces. The equilibrium positions evidently differ from the 
rest positions determined by the minimum of the potential energy, firstly because of the 
external forces and secondly because of the anomalous thermal expansion. The equilib- 
rium condition may be written as : 

which can be written, because of equation (9), in the form 

(D,p(l, / ’ ) (@p( I ‘ )+  Yp(1’)- Kp(1’)))~ = 0, (12) 

where the average is with respect to the total Hamiltonian and is defined by 

The isothermal elastic constants can be obtained by making an infinitesimal homo- 
geneous deformation, & ( I )  + Ra(l) + 6R,(I), and by varying the external force 
K,(l) + & ( I ) +  6K,(I). The temperature is kept constant. The expansion coefficients 
@,(I )  and Y,(l) will change accordingly. However, Dap(I, I’ )  which depends upon the 
force constants Oap(I, 1‘) and Yap(!, I‘) is to be kept constant in the harmonic approxima- 
tion. The anharmonic terms should be included in a consistent manner if the strain 
dependence of the force constants is to be included. In the presence of the deformation, 
the equilibrium condition, therefore, becomes 

(D,p(l, l ’ ) [ (@py( l ‘ ,  l”)+’€’pJl‘, 1”))6R,(I”)-6Kp(l’)]),, = 0, (14) 
where H’ is the new Hamiltonian obtained by changing R,(1) and Ka(I) to their new values. 
If we retain only those terms which are linear in the deformation, the new equilibrium 
positions are given by 

h R ( 4  = - (Da&I,  Ir))H6Kp(l’)+P6K,.(m)(Dap(l, I ’ ) ( @ p ( U +  yp(I’)-Kp(U) 

D,’p’(m, n#@tp’(n) + Yp’(n) - K/?’(n) )>H.  (15) 
It is evident from equation (10) that Dap(I, 1’) depends on the spin configuration. Wagner 
and Swift (1970) approximate it by its thermal average. There is no need of this ap- 
proximation if one neglects the second-order term in the exchange interaction. As has 
been pointed out by them it is better to approximate Dap(l,  1’) than to neglect the Yap(/, 1’) 
term. This problem has been studied in detail by Wagner and Swift (1970) and we shall 
not dwell on this any more. In the following section we try to decouple the spin and the 
phonon variables in equation (9). 

3. Effeetive Hamiltonian 

It is clear that the spin and the phonon variables are coupled in the Yap(l, 1’ )  term in 
equation (9). In order to achieve the decoupling, we rewrite the partition function in the 
form 

Z = Tr exp( - PH,) 
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where the purely spin-dependent Hamiltonian, H , ,  is defined as 

H ,  = y o  -iQa&!, l’)(@AO + y,(O - Ka(0)(@p(l’) + Yp(j’)- Kp(U), 

( 0 ) ~ ~  = [TI‘ exP(- flH,)OI/Tr exP( - f l H d  

(17) 

(18) 

and 

The advantage of writing the partition function in the form of equation (16) is that Z 
can be looked upon as a product of two partition functions, one involving only the spin 
variables and the other involving only the displacements. We may, therefore, write 
equation (16) as 

z = Z,ZL,  (19) 

where 

Z ,  = Tr exp( -pH,) 
and 

( 2 2 )  

where HLh is the phonon Hamiltonian in the harmonic approximation and is given by 

H L h  = (1/2M)PUU)PA4 + @o + Nap(!, k(L ++(l’> 5) .  (23) 

The effective phonon Hamiltonian can immediately be written down. So far our treat- 
ment has been exact. In practice, as we shall see later, one has to approximate Z , .  
Depending on what particular physical property one is interested in, one can start 
either with ZL or with Z , .  First we try to study the effective spin Hamiltonian H ,  in some 
more detail. 

3.1. The effective spin Hamiltonian 

It may easily be verified that Dup(l, !’) that occurs in equation (17) depends only on the 
spin variables. H,,  therefore, depends only on the spin configuration. In order to obtain 
the explicit spin dependence of H , ,  we proceed as follows. 

Duo(/, 1’) can be evaluated analytically by solving the path integral (Feynman 1948) 
after expressing the displacements in terms of the normal coordinates, 

41) = (1/NW”2 Q ( q + o 4  exp(iq - NO), (24) 
4 d  

where q is the reciprocal lattice vector in the first Brillouin zone. e(qA) is the polarization 
vector corresponding to the wavevector q and the branch A. For a primitive lattice, 
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3. = 1 , 2 , 3 .  Q(qi.) are the normal coordinates. D a p ( / ,  I‘) then becomes 

D ~ ~ ( / ,  1’)  = ( ~ / N M )  C ( l /u2(q i ) )e , (qn)e ,*(q~)  exp[iq . (R(4  - R(/‘))I 

Ma&) = ( l /M){@,p( l ,  U +  Yap(/ ,  1’)) e x p h  . W‘)- W1. 

0 2 ( q i )  = wt(qE.) + wK(qi.), 

(25) 
q,;. 

where w2(qj.) are the eigenvalues of the dynamical matrix 

(26) 

(27) 

It is convenient to write w 2  as 

where w:(qj.) is the eigenvalue of the dynamical matrix without the exchange interaction 
and w;(qi.) is the increment in the eigenvalue due to spin-phonon coupling. The magni- 
tude of of is likely to be small compared with w t  (Nandwani and Puri 1972, Oitmaa, 
1974). Therefore, it seems reasonable to  write ( l jw2)  in equation (25) as : 

(28) {w(qi.)) - 2 {wL(qj.)) - 2[ 1 - (w,(qi)/oL(qE.))2 + ( ~ , ( q i ) / o ~ ( q j ~ ) ) ~ ] .  

From equations (17), (25) and (28) we obtain by straightforward algebra 

H ,  = Y o  - 1 ( 2 N M o ~ ( q j . ) ) -  ‘ (Oa( / )+ Yz( / ) -  K,(/))(@&I‘)+Y&/’)- K,(I’))e,(qj.)e,*(qi) 
q, / .  

x [ 1  - (o,(qj.)/wL(qj.))2 + (w,(qjL)/oL(qj.))41 expbq . @(I) - R(/’))I. (29) 
In order to depict the dependence of H ,  explicitly on the spin configuration, we write 
with the help of equations (2), (26) and (27), 

Yzo( / ,  I‘) = $qD(/, / ’ ) O i O j ,  

and 
wK(qi.1 = Tj(qi )oIoJ,  

where J $ ( / ,  /’) is defined in a similar manner as I’) and 

Tj(qE.) = (1/2M)e3qE.)J;$(/, /‘)e&>.) exp[iq . (R(I‘) - R(I))]. (32)  
Re-arranging the terms in equation (29)  according to the number of spin operators 
appearing, we obtain 
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In writing down the above equations, we have made use of the following property of the 
eigenvectors : 

e( - q i )  = e*(q i ) .  (35) 

It may be observed that H o  is spin independent, H2  contains two spins and H ,  contains 
products of four spins. In general, of course, H, contains higher-order terms also which 
may easily be obtained by including higher-order terms in the expansion of l / 02 (qL)  
in equation (28). However, we feel that the 6-spin terms may not be very important. 

To compare our results with those obtained by Bolton and Lee (1970) we simply put 
Tj(q%) = 0 in equations (34). This is equivalent to neglecting the second-order term in 
the exchange interaction. To this order of approximation H6 and the higher-order 
terms in equation (33) are exactly zero. If we do this we obtain 

H, = H, +&Iaoioj - (2NMwt(qi.)} - 'e,(qA)et(qE.) exp[ - iq . (R(I) - R(I'))] 
q , l  

x [J:j(1)pp(l') - Kp(l '))  + aJ~(1)J~"(l')]oioj(T,6,. (36) 

Equation (36) differs from the expression for the effective spin Hamiltonian obtained by 
Bolton and Lee (1970) due to the fact that they expand the potential and the exchange 
energy about the rest positions rather than the equilibrium positions. If we put 
OZ(l) = & ( I )  in the above expressions, it reduces exactly to their expression. However, 
we feel that the effective spin Hamiltonian obtained here is more general and consistent 
with the fact that the equilibrium positions depend upon the spin configuration. 

3.2. Effective phonon Hamiltonian 

If one is interested in the el€ect of spin-phonon coupling on the phonons, it is convenient 
to start with equation (22). If we define the effective phonon Hamiltonian HL by 

ZL = dNu(i) gN(u(i, 5))exp 5 1  (37) 

we obtain from equations (22) and (30) 

HL = HLh - Ka(!)Ra(l) + ;J$(!, I')ua(I)up(I') (oi~j>H, +#$(I ,  r)&$,(m, n)ua(l)up(l') 

x I," ua.(m, T)ug.(n, 7 )  dr((oiojoi,oj!)H8- <oioj>Hs(~i,~j,>H,)+ . . . . (38) 

It may be observed that H ,  does not contain any explicit spin dependence. Though we 
started with the harmonic Hamiltonian, the effective phonon Hamiltonian contains 
terms which are quartic and of higher in displacements. The spin-phonon coupling, 
therefore, can be considered as giving rise to some kind ofanharmonicity. The anomalous 
thermal expansion could be understood as partly due to this induced anharmonocity 
and partly due to the effect of the coupling on the equilibrium positions. 

In those cases where the spin fluctuations and the strength of the exchange coupling 
are not large, the second and the higher-order cumulants in equation (38) may be ne- 
glected. To this order of approximation, the effective Hamiltonian may be written, after 
substituting for the HLh from equation (23), as 

HL = (1/2WPa(l)pa(I) + - K a ( W a ( O  +@ap(L  l ' ) ~ a ( O ~ p ( U ~  (39) 
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where the effective force constants are defined by 

SaP(l, 1‘) = l’)+$J:B(l, a)(aiaj)H,. (40) 

It is evident from the above equations that the exchange interaction modifies the force 
constants and, therefore, the phonon frequencies are renormalized. Recently, Oitmaa 
(1974) has discussed the effect of the exchange interaction on the phonon frequencies of a 
simple cubic lattice with nearest-neighbour interactions. If we compare equation (4) 
in his paper with our results, the approximations made by him seem to correspond to the 
neglect of the second cumulant in the effective phonon Hamiltonian obtained here. 

In the light of the above comments it is expected that the Debye-Waller factor 
should also depend on the strength of the spin-phonon coupling. The importance of this 
effect has been pointed out earlier by Bashkirov and Selyutin (1968). To obtain the 
Debye-Waller factor they used the Green function method and employed a low-order 
decoupling scheme. In the present treatment we may write down the formal expression 
for the exponent of the Debye-Waller factor as 

(41) 

whereg is the wavevector of the gamma ray. The path integral involved in equation (41) 
is difficult to solve for the general case. However, if we approximate the effective phonon 
Hamiltonian by equation (39), where we retained only the first cumulant, the path 
integral can be done analytically after making the normal mode transformation. The 
exponent of the Debye-Waller factor is then given by 

2 w  = 4n2g,g,(u,(L + p ( L  T))HL, 

2 W = (2n2h/NM) [(g . e(qA))2/G(qA)] coth(@hG(qA)), (42) 
q , l  

where O(ql)  are the normal mode frequencies determined by the effective force constants 
defined in equation (40). If we compare equation (42) with the results obtained by 
Bashkirov and Selyutin (1968), it appears that the decoupling scheme used by them is 
equivalent to the approximation in which only the first cumulant in the effective spin 
Hamiltonian is retained. 

4. The self-consistent tbeory 

The above formalism is not very suitable for anharmonic crystals. The difficulty arises 
mainly due to the fact that now all the cumulants in general will appear in the expansion 
for the average in equation (6). When the anharmonic effects may be important, it is 
better to follow the self-consistent procedure given recently by Samathiyakanit and 
Glyde (1973). We wish to extend their formalism to include the exchange interaction. 
Following their notation, the general Hamiltonian may be written as : 

(43) 
where the Cartesian component ct and the atom index 1 have been sub-summed in a 
composite index i. For simplicity we have omitted the external forces which can always 
be included later. Vi means 8/8ui evaluated at the equilibrium positions. We introduce 
a model Hamiltonian 

H ( T )  = (1/2M)pi(T)pi(T) + exp(ui(z)vi)(@ + &Jkfakof), 

B 

0 
Ho(T)  = (1/2M)pi(T)pi(T) 4-4 @ij(T, T’)Uj(?)Uj(T’) dT‘ + $ j k f a p , .  (44) 
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The force constants ojj(7, T ’ )  have been taken to be explicitly time dependent to  include 
the possibility of phonons with a finite lifetime. On introducing the model partition 
function 

Z, = Tr 5 dNu, i QN(ui(r)) exp( - ioP H,(.r) dr) ,  

we may write the partition function of the system as 

z = Z,(exp[ -Jpo (Wr) - HOW) d7lh 

where 

(0 )  = Z;’ Tr dNui QN(ui(z)) exp i s  

(45) 

(47) 

On expanding the average in cumulants 

- (F: ( H ( 7 )  - H,(t)) dr)2} + . . .) . (48) 

In the first-order self-consistent theory we retain only the first cumulant in the above 
equation and write the free energy with the help of equations (43) and (45) as 

- P F  = In Z,- io ds(exp(uiVi)(cD+iJk’a,c,) 
P 

(49) -1 so P d7’6ij(T, T ’ ) u ~ ( T ) u ~ ( T ‘ )  - i j i j ~ , c , ) .  

Expanding the average in cumulants and using the fact that, for Gaussian averaging 
such as appears in equation (49), only the second cumulant is non-zero, we obtain 

r 4  r4 

(50) 

Dij(T, T ’ )  = (Ui(?)Uj(?’)). (51) 

where 

To choose the force constants 6ij(~, 7’) and j i j ,  we use the variational principle and mini- 
mize the free energy with respect to 6ij(~, 7’) and j i j  to obtain 

6,,,,,(T, T ’ )  = id(T - 5 ’ )  eXp(+Djj(T, T’)v,vj)v,,,vn(@ + i J k J ( O k O , ) )  

and 

j m n  = exp(+Djj(r, (52) 

The above equations for the force constants must be solved self-consistently in conjunc- 
tion with equation (44). It may easily be seen that, if the exchange interaction is taken 
to be zero, equations (52) reduce to the expression obtained by Samathiyakanit and 
Glyde (1973). 
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5. Conclusion 

In the present paper we have used the path integral method to decouple the spin and the 
phonon variables in the Hamiltonian of a compressible Ising model where the exchange 
interaction is expanded up to terms quadratic in displacements. To achieve this we 
first eliminated the linear terms by averaging over Hh which contains only the quadratic 
terms. When a cumulant expansion of the average is made, only the second cumulant is 
non-zero due to the Gaussian averaging. In the second step we average the displace- 
ment term over H ,  which depends on spins only. This enables us to write the Hamiltonian 
as a sum of two terms, the effective spin Hamiltonian and the effective phonon 
Hamiltonian. The effective spin Hamiltonian is shown to reduce to that obtained 
earlier by Bolton and Lee (1970) and by Wagner and Swift (1970), both of whom neglected 
the quadratic term in the exchange interaction. 

The path integral method appears to be very useful for investigating the effect of 
spin-phonon coupling. An important advantage of this approach is that successive 
orders of approximation can be employed to improve upon the results. It has been 
shown here that the approximations made by Bashkirov and Selyutin (1968) in obtaining 
the Debye-Waller factor, and by Oitmaa (1974) in studying the effect on the phonon 
frequencies, correspond to retaining the lowest-order cumulant in our treatment. 

The spin-phonon coupling is shown to give rise to 4-spin and higher-order spin 
terms in the effective spin Hamiltonian. The quadratic term in the exchange interaction 
not only introduces the 6-spin and higher-order terms but also modifies the coefficient 
of the 4-spin term. Recently, Aharony (1973) has studied the critical behaviour of 
magnets with linear exchange coupling in the framework of renormalization group 
recursion relations. Since the quadratic exchange coupling changes the coefficient of the 
4-spin term, the critical behaviour may also be modified. 

It is also shown that the quadratic exchange coupling induces anharmonicity in the 
effective phonon Hamiltonian. These anharmonic terms are important for the study of 
termal expansion. Finally we have outlined the procedure to treat the exchange coupling 
in anharmonic crystals. 
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